英伟达A100显卡大厂们的“必需品”
发布时间: 2023-10-24 10:35

英伟达A100显卡大厂们的“必需品”云服务、数据中心、超算、自动驾驶平台、元宇宙平台等大厂是使用A100的主力军,它们面对的是海量数据,讲究极致的计算性能是对芯片的需求之一,而往往它们需要的不只是一块GPU。

Stateof.ai去年发布了一份人工智能状况报告,对当前各企业和机构拥有的A100和H100数量进行了统计。

如上图显示,排名前三位的分别是Meta(21400)、欧洲超算Leonardo(13824)和特斯拉(7360)。

Meta在去年宣布建造全球最快的AI超算“RSC”,包含16000颗A100 GPU,目的即是为了元宇宙平台。元宇宙概念是2022年引爆互联网及科技产业的热词,元宇宙本质上是对现实世界的虚拟化及数字化的过程。它本身不是新技术,但却融合了包括5G、云计算、AI、虚拟现实、物联网、人机交互等一大批现有的尖端技术。

来自意大利CINCA研究中心的Leonardo超级计算机使用了近14000颗A100 GPU,被称为世界上最强大的AI系统。超级计算机多用于国家高科技领域和尖端技术研究,由于其集功能最强、运算速度最快、存储容量最大的优势集一身,在气候、材料学、生物医药、先进制造、航空航天等领域有着广泛的用途,可以模拟大气、气候和海洋,对地质灾害进行预测,也可以对药物研制、生化反应进行模拟,大幅缩短研发时间。

总之,超算是你平常看不见摸不着甚至鲜有耳闻,但却在一个隐秘角落为科技发展发光发热的劳模。

特斯拉在CVPR 2021(国际计算机视觉与模式识别会议)上公布了内部用于训练Autopilot与自动驾驶深度神经网络的超级计算机。这个集群使用了720个节点的8个NVIDIA A100 GPU(共5760个GPU)。

我们知道特斯拉是纯视觉自动驾驶的推崇者,在没有激光雷达提供3D空间数据的情况下,特斯拉仅依靠摄像头提供的2D图像就能完成现有的辅助驾驶系统,这背后是上百万台特斯拉,每天在路上行驶获得的海量图像数据,以及特斯拉为此构建的神经网络模型。

除了这三位外,榜单其余部分均是公有云、私有云和国家超算。

国内企业部分,基于有限的资料,能大量使用A100的大致分为三类:一类是阿里、百度、腾讯(俗称BAT)等云服务商,另一类是浪潮、联想、新华三等系统集成商,第三类是像小鹏等自动驾驶车企,但从整体规模来看,海外明显占据上风。

从以上企业所处领域,我们大致归纳出A100等训练芯片主要应用的场景:云计算、超算、深度学习模型训练、自动驾驶、元宇宙、机器视觉等,深入的领域包括:工业、医疗、金融、气候、农业、能源、消费、汽车、半导体等。这些场景和领域往往面临着超大规模的密集型数据、海量存储及高性能计算。

它们都需要不止一块强悍的芯片,强到连英伟达竟也成为了自己供应商的供应商

黄仁勋在今年GTC演讲中宣布,新发布的基于 GPU 的计算光刻软件库 cuLitho,用于芯片制造中最复杂、最昂贵的光刻环节,使用它之后计算光刻速度可以提升至原来的 40 倍,光掩膜产能提升 3 至 5 倍,电力消耗减少为当前的九分之一。黄仁勋说,cuLitho 将辅助芯片制程向 2 纳米及更先进迈进。

跟英伟达一起研发该技术的三家公司分别是台积电、ASML 和 Synopsys。台积电帮英伟达代工生产 GPU 芯片,是它最重要的供应商之一。ASML 和 Synopsys分别是全球光刻机和 EDA 龙头,都处于整个半导体产业最上游环节。现在三者都要用英伟达的 GPU 和技术平台。

这意味着能用A100的玩家们并非等闲之辈,能用得到A100的地方也并非是通用化的场景,这就造就了A100这类芯片独特的身份,它的应用范围和使用人群非常的聚拢和突出。

粤公网安备 44030502006483号、 粤ICP备15047669号
  • 捷易科技联系人